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Abstract. The photonic band structure of a two-dimensional hexagonal lattice of air cylinders
embedded in an ionic crystal is calculated using the plane-wave method. The dielectric function
of the ionic crystal is taken asε(ω) = ε(∞)(ω2

LO − ω2)/(ω2
T O − ω2), with ε(∞), ωT O , and

ωLO denoting the high-frequency dielectric constant, and the transverse and longitudinal optical
phonon frequencies, respectively. The frequencies of the electromagnetic modes are determined
from the zeros of the determinants of the matrix equation. Due to the strong coupling between
the photon and transverse optical phonon, the photonic band dispersions are suppressed and
photonic band gaps are easier to open up in comparison with those of non-ionic media. Our
study also suggests that the plane-wave method gives reliable photonic bands only for frequency
below ωT O .

1. Introduction

The periodical spatial variation of certain physical properties affects the propagating
behaviours of the corresponding Bloch waves; the strongest influence occurs near the
Brillouin boundaries where the travelling waves are transformed into standing waves, and
this results in an energy gap which splits the dispersion relation into infinite bands. The
best-known example is that of the electronic band structures in all crystals due to the
periodic potential experienced by the electrons. For electromagnetic wave propagation in
bulk dielectric media, because the wavelength of the electromagnetic waves is much larger
than the lattice constant, photons experience only a constant dielectric function, and thus
there is no band gap. To make the propagation of electromagnetic waves parallel to the
electron propagation in a periodic potential, one can however introduce artificial periodic
structure in a dielectric function whose lattice constant is comparable to the wavelength of
the electromagnetic waves so that the Bloch theorem can be applied again.

This was proposed several years ago in the pioneering work by Yablonovitchet al [1–3]
on the electromagnetic waves propagating in periodic dielectric media. Since the studies of
photonic band structures in these materials are of fundamental physical interest and since
there are potential applications in numerous laser-related semiconductor devices, this new
research field has been attracting a great deal of attention recently [4–16]. Various numerical
methods have been employed and particular attention is focused on the search for dielectric
structure possessing photonic band gaps. This has been the case since Yablonovitchet al
[1–3] suggested that the overlap of the photonic gap and electronic band edge suppresses
the spontaneous emission of light and favours a population reverse which can improve
the performance of many optical and electronic devices. It is also suggested [16] that the
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Anderson localization of light in the band gap can be more easily observed if the periodic
structure of the dielectric is disordered than if the atomic structure of the dielectric is
disordered.

Among the numerical methods used for calculating the photonic band structures, the
most frequently adopted technique is the plane-wave expansion with its scale wave and
vector wave approximations. The search for photonic-band-gap materials has been carried
out for both three-dimensional dielectric media [4–10] and two-dimensional ones [11–13].
These studies show that various periodic structures do possess photonic gaps, and thus
have potential for future applications. They also suggest that the plane-wave expansion
method is a straightforward method and easy to implement; it gives reliable results in most
circumstances. However, in the plane-wave method, one has to truncate the expansion series
at a certain order; this may cause slow convergence of the solution in the presence of a
very rapid change of electromagnetic waves in the system. To overcome this difficulty, the
transfer-matrix method has also been in wide use recently for calculating the transmission
spectra of photonic-band-gap materials [14].

In the last few years, the search for photonic-band-gap materials has extended to systems
with restricted geometry and to frequency-dependent dielectric media [17–22]. The study
carried out by Maradudin and McGurn [17] for the truncated, two-dimensional periodic
dielectric medium shows that nearly dispersionless photonic bands exist for very thin plates
due to the quantization conditions. For the frequency-dependent dielectric function, the
photonic band structures have been calculated for metallic and semiconductor arrays [14,
18–20] and for superconductor arrays [21]. These studies suggest that nearly dispersionless
bands also appear below the plasma frequency. For the photonic-band-gap materials
composed of ionic crystal, while the transmission spectra have already been obtained by
Sigalaset al [22] for the finite-slab square-lattice dielectric medium, the photonic band
structures have not been studied yet.

Therefore, we have studied the photonic band structure for the ionic dielectric media
consisting of two-dimensional periodic arrays of parallel dielectric rods with circular cross
sections, where the rods are embedded in a background medium with a different dielectric
function. The electromagnetic waves are assumed to propagate in the plane, and two
polarization orientations are considered where either the electric fieldE or the magnetic
field H is normal to the plane. Our detailed calculations show that the photonic band
structures in ionic dielectric media are generally quite different from their counterparts in
non-ionic dielectric media. The strong photon–phonon coupling makes the photonic gaps
easier to open up since it reduces the dispersion of the photonic bands in comparison with
that of the non-ionic dielectric media. In particular, this coupling is so strong near the
long-wavelength transverse optical phonon frequencyωT O that it makes the photons almost
localized for a certain volume filling of the dielectric rods. This result is of great physical
interest since it offers an alternative mechanism for the photon localization and it suggests
that strong photon–phonon interaction plays the same role in photon localization as the
strong electronic correlations play in the electron localization.

The rest of the paper is organized as follows. In section 2, we derive the basic
equation sets which govern the behaviour of the electromagnetic waves using the plane-wave
expansion method. The frequencies of the electromagnetic modes are determined from the
zeros of the determinants of the matrix equation. The numerical results for the photonic band
structures are presented and discussed in section 3 for different filling fractions, dielectric
constants, and characteristic frequencies. Section 4 gives our conclusions.
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2. The ionic dielectric model and the numerical method

In this paper, the periodic dielectric media are taken into account using a method based on
a position-dependent dielectric function, which has been shown to be effective in earlier
calculations of this type for non-ionic dielectric media [4–13]. The dielectric function for
ionic dielectric media is frequency dependent due to the interaction between the transverse
optical phonons and photons; it is generally given in terms of the high-frequency dielectric
constantε(∞), transverse optical phonon frequencyωT O , and longitudinal optical phonon
frequencyωLO : ε(ω) = ε(∞)(ω2

LO − ω2)/(ω2
T O − ω2), and the high-frequency dielectric

constantε(∞) and static dielectric constantε(0) satisfy the Lyddane–Sachs–Teller (LST)
relation ε(∞)ω2

LO = ε(0)ω2
T O . The ‘eigen’-equation which determines the photonic band

structure for the periodically modulated ionic dielectric media can be derived in a similar
way to that given by McGurn and Maradudin [18].

(1) H-polarization. When the magnetic field is perpendicular to the two-dimensional
plane, the non-vanishing components of the magnetic fieldH and electric fieldE are

H(x1, x2, t) = [0, 0, H3(x1, x2, ω)]e−iωt (1a)

E(x1, x2, t) = [E1(x1, x2, ω), E2(x1, x2, ω), 0]e−iωt . (1b)

Here, x1 and x2 are the two coordinates in the two-dimensional plane andt is the
time. After eliminatingE1 and E2 in terms ofH3, the magnetic field is described by a
second-order partial differential equation:

∂

∂x1

[
1

ε(x, ω)

∂H3

∂x1

]
+ ∂

∂x2

[
1

ε(x, ω)

∂H3

∂x2

]
= −ω2

c2
H3. (2)

Since the dielectric functionε(x, ω) is a periodic function in real space, the magnetic field
H3 satisfies the Bloch theorem. Thus the dielectric function and the magnetic field can be
expanded in the reciprocal space as follows:

1

ε(x, ω)
=

∑
G

κ(G, ω)eiG·x (3)

H3(x, ω) =
∑
G

Hk(G, ω)ei(k+G)·x (4)

wherek and G are the wave vector and the reciprocal-lattice vector, respectively. When
these expansions are substituted into equation (2), we obtain the following equation for the
coefficientHk(G, ω):∑

G′

[
κ(G − G′, ω)(G + k) · (G′ + k)

]
Hk(G′, ω) = ω2

c2
Hk(G, ω). (5)

(2) E-polarization. In the case where the electric field is normal to the two-dimensional
plane, the non-vanishing components of the electric fieldE and magnetic fieldH are

E(x1, x2, t) = [0, 0, E3(x1, x2, ω)]e−iωt (6a)

H(x1, x2, t) = [H1(x1, x2, ω), H2(x1, x2, ω), 0]e−iωt . (6b)

H1 andH2 can be expressed in terms ofE3, and the Maxwell equation for the electric field
is reduced to

1

ε(x, ω)

[
∂2E3

∂x2
1

+ ∂2E3

∂x2
2

]
= −ω2

c2
E3. (7)
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After expanding the electric fields in the reciprocal space

E3(x, ω) =
∑
G

Ek(G, ω)ei(k+G)·x (8)

one obtains the equation satisfied by the coefficientEk(G, ω):∑
G′

[
κ(G − G′, ω)(G′ + k)2

]
Ek(G′, ω) = ω2

c2
Ek(G, ω). (9)

This equation can be made symmetrical with respect toG andG′ if one introduces a set
of new coefficientsẼk(G, ω) = |G + k|Ek(G, ω). Then the matrix equation, for the new
coefficients, becomes∑

G′

[|G + k|κ(G − G′, ω)|G′ + k|] Ẽk(G′, ω) = ω2

c2
Ẽk(G, ω). (10)

Thus to obtain the photonic band structure for electromagnetic waves propagating in
periodically modulated dielectric media, one has to obtain solutions of the matrix
equation (5) and equation (10). However, equation (5) and equation (10) are not linear
equations for ionic dielectric media sinceκ depends also on the frequency.

The above derivation is suitable for all periodic arrays of parallel dielectric rods of
arbitrary cross section and applicable to any of the five Bravais lattices in two dimensions.
In this paper, we concentrate on the hexagonal lattice. The two fundamental translation
vectors for hexagonal lattice area1 = a(

√
3/2, 1/2) and a2 = a(−√

3/2, 1/2) in real
space andb1 = (4π/

√
3a)(1/2,

√
3/2) and b2 = (4π/

√
3a)(−1/2,

√
3/2) in reciprocal

space.a is the lattice constant. In the case of rods with circular cross section of radiusR,
we have

κ(G, ω) =


f

εa(ω)
+ 1 − f

εb(ω)
if G = 0(

1

εa(ω)
− 1

εb(ω)

)
f

2J1(GR)

GR
if G 6= 0

(11)

where εa(ω) and εb(ω) are the dielectric functions of the rods and the background,
respectively. G = n1b1 + n2b2 with integersn1 and n2 and G = |G|. J1(GR) is the
first-rank Bessel function. The filling fractionsf are given byf = 2πR2/

√
3a2 for the

hexagonal lattice. We assume that the background dielectric function is of ionic type and
takes the formεb(ω) = εb(0)[ω2

T O(ω2
LO − ω2)]/[ω2

LO(ω2
T O − ω2)]. The dielectric function

for the rods is taken as a constant,εa(ω) = εa.

3. Results and discussion

The non-linear matrix equations (5) and (10) are solved for various combinations of
parameter setsεa, εb(0), ωT O , ωLO , f , and for different polarizations of electromagnetic
waves. The detailed numerical procedure is as follows: we take a large number of mesh
pointsωa/2πc for a givenk—this number is 1000 in our case for 0< ωa/2πc < 1. We
calculate the determinants of the matrix equation at these mesh points and find out the region
where the determinants of the neighbouring mesh points change sign. Thus the accuracy
of the solutions for a given number of plane waves is 0.001. We have taken 331 plane
waves in calculating the photonic band structures. Our results are checked for different
numbers of plane waves and the accuracy of the photonic band structures using 331 plane
waves is within 3% for the bands that are not too near to the transverse optical phonon
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Figure 1. The photonic band structure with the magnetic field normal to the plane. The values
of the parameters areωT Oa/2πc = 0.5, ωLOa/2πc = 1.0, εa = 1, and the filling fraction
f = 0.64. (a)εb(0) = 5 and (b)εb(0) = 10. The inset shows the first Brillouin zone for the
hexagonal lattice, with the symmetry points and directions indicated.

frequencyωT O . For the photonic bands aboveωT O the plane-wave expansion does not
give reliable results because of the existence of the exponentially decaying solution. Thus,
in the following we only present the bands belowωT O and discuss the effect ofεb(0), the
polarization orientation, and the phonon frequencies, separately.

In figure 1, we show the three lowest photonic bands belowωT O for the case of
H-polarization. The abscissa refers to the wave vectork as indicated in the inset, and
the ordinate refers to the frequency scaled by 2πc/a. The parameter values are taken as
ωT Oa/2πc = 0.5, ωLOa/2πc = 1.0, εa = 1, andεb(0) = 5 andεb(0) = 10 for figure 1(a)
and figure 1(b), respectively. The filling fractionf = 0.64 was chosen to maximize the
size of the photonic band gaps. The lowest first band has large dispersion which is similar
to that in the case of a non-ionic situation [10]; it is separated by a relatively large gap
from other bands. One absolute band gap is observed in the frequency range. Comparing
figure 1(a) and figure 1(b), one also sees that a largerεb(0) leads to a larger photonic gap;
this is achieved by reducing the dispersion of the low bands. The main feature of the
photonic band structure of the ionic medium is the appearance of very flat bands near the
edge of the transverse optical phonon frequencyωT Oa/2πc = 0.5.

It would be of interest to see whether the narrow dispersion features of some photonic
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Figure 2. The photonic band structure with the electric field normal to the plane. The values
of the parameters areωT Oa/2πc = 0.5, ωLOa/2πc = 1.0, εa = 1, and the filling fraction
f = 0.78. (a)εb(0) = 5 and (b)εb(0) = 10.

bands are peculiar to certain polarization orientations. Our study suggests that this property
is quite general, and that the flattening of the band does not depend on the polarization
orientations of the electromagnetic waves, since it also occurs in the band structure when
the electric field is perpendicular to the two-dimensional plane, as shown in figure 2. The
values of the parameter sets are the same as in figure 1 except that the filling fraction
f = 0.78. One absolute band gap is observed in the low-frequency range, and the size
of the lowest photonic gap is smaller than those in figure 1. The effect of the background
dielectric constantεb(0) is the same as before: a largerεb(0) enhances the photonic gap by
pushing the lower bands downwards. Note that the bands nearωT Oa/2πc = 0.5 all have
very narrow dispersion.

To see how the phonon frequency affects the propagation behaviour of the electro-
magnetic waves, we have also calculated the photonic band structures forωT Oa/2πc = 1.0
and ωLOa/2πc = 2.0, which are shown in figure 3. The magnetic field is taken to be
normal to the two-dimensional plane. The other parameter values are taken asf = 0.64,
εa = 1, andεb(0) = 5 andεb(0) = 10 for figure 3(a) and figure 3(b), respectively. As in
figure 1, one absolute photonic band gap is observed in the nine lowest bands belowωT O ,
but the size of the photonic band gap is slightly larger than in figure 1. Due to the increase
of the transverse and longitudinal optical phonon frequencies, the narrow bands are also
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Figure 3. The photonic band structure with the magnetic field normal to the plane. The values
of the parameters areωT Oa/2πc = 1.0, ωLOa/2πc = 2.0, εa = 1, and the filling fraction
f = 0.64. (a)εb(0) = 5 and (b)εb(0) = 10.

shifted upwards towardsωT Oa/2πc = 1.0. The influence of the dielectric constant is the
same as before.

The photonic band structure with the electric field perpendicular to the two-dimensional
plane is illustrated in figure 4; other parameters are exactly the same as in figure 3. Unlike in
figure 3 where the size of the lowest photonic band gap increases as the phonon frequencies
increase, the size change of the photonic band gap with the electric field normal to the
two-dimensional plane is more subtle and depends on the value ofεb(0): the size of the
gap increases with the phonon frequency forεb(0) = 10 and decreases forεb(0) = 5.
From the above discussion, we found that the introduction of the photon–phonon coupling
generally narrows the band dispersion and makes the photonic band gap easier to open up;
this coupling has the strongest effect near the transverse optical phonon frequency.

4. Conclusion

In summary, we have studied in this paper the effect of strong photon–phonon coupling
on the photonic band structure. We found that strong photon–phonon coupling flattens the
photonic bands, and that photonic band gaps are generally enhanced in comparison with
those of non-ionic media.
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Figure 4. The photonic band structure with the electric field normal to the plane. The values
of the parameters areωT Oa/2πc = 1.0, ωLOa/2πc = 2.0, εa = 1, and the filling fraction
f = 0.78. (a)εb(0) = 5 and (b)εb(0) = 10.
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